array -> jpeg
This script should not be not be installed directly. It is a library for other scripts to include with the meta directive // @require https://update.greasyfork.org/scripts/39428/258126/bv7_jpeg_encoder_b.js
// ==UserScript== // @name bv7_jpeg_encoder_b // @namespace bv7 // @version 0.1 // @description array -> jpeg // @author bv7 // ==/UserScript== // include file:///D:/projects/JSProjects/bv7bbc/bv7_bbc_dark/bv_dev_canvas*.html // require https://greasyfork.org/scripts/38665-bv7-jpeg2array-b/code/bv7_jpeg2array_b.user.js // require https://greasyfork.org/scripts/39257-bv7-canvas-b/code/bv7_canvas_b.js // require https://raw.githubusercontent.com/owencm/javascript-jpeg-encoder/master/jpeg_encoder_basic.js // run-at document-idle // grant GM_xmlhttpRequest class JpegEncoder { constructor() { this.zigZag = [ 0x00, 0x01, 0x05, 0x06, 0x0E, 0x0F, 0x1B, 0x1C, 0x02, 0x04, 0x07, 0x0D, 0x10, 0x1A, 0x1D, 0x2A, 0x03, 0x08, 0x0C, 0x11, 0x19, 0x1E, 0x29, 0x2B, 0x09, 0x0B, 0x12, 0x18, 0x1F, 0x28, 0x2C, 0x35, 0x0A, 0x13, 0x17, 0x20, 0x27, 0x2D, 0x34, 0x36, 0x14, 0x16, 0x21, 0x26, 0x2E, 0x33, 0x37, 0x3C, 0x15, 0x22, 0x25, 0x2F, 0x32, 0x38, 0x3B, 0x3D, 0x23, 0x24, 0x30, 0x31, 0x39, 0x3A, 0x3E, 0x3F ]; this.std_dc_luminance_nrcodes = [ 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ]; this.std_dc_luminance_values = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B ]; this.std_ac_luminance_nrcodes = [ 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D ]; this.std_ac_luminance_values = [ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA ]; this.std_dc_chrominance_nrcodes = [ 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 ]; this.std_dc_chrominance_values = [ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B ]; this.std_ac_chrominance_nrcodes = [ 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77 ]; this.std_ac_chrominance_values = [ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0, 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA ]; this.YDC_HT = new Uint8Array(0x0B); this.UVDC_HT = new Uint8Array(0x0B); this.YAC_HT = new Int8Array(0xFA); this.UVAC_HT = new Int8Array(0xFA); this.YDC_HT2 = new Uint8Array(0x0B); this.UVDC_HT2 = new Uint8Array(0x0B); this.YAC_HT2 = new Uint8Array(0xFA); this.UVAC_HT2 = new Uint8Array(0xFA); this.YTable = new Uint8Array(0x40 ); this.UVTable = new Uint8Array(0x40 ); this.fdtbl_Y = []; this.fdtbl_UV = new Float32Array(0x08); this.outputfDCTQuant = new Uint16Array(0x40 ); this.DU = new Int16Array(0x40 ); this.category = new Uint8Array(0xFFFE); this.bitcode = new Uint16Array(0xFFFE); this.RGB_YUV_TABLE = new Uint32Array(0x0800); this.YDU = new Int16Array(0x40 ); this.UDU = new Int16Array(0x40 ); this.VDU = new Int16Array(0x40 ); this.initHuffmanTbl(); this.initCategoryNumber(); this.initRGBYUVTable(); } // IO functions writeBits(value, posval) { while (posval >= 0) { if (value & (1 << posval)) this.bytenew |= (1 << this.bytepos); posval--; this.bytepos--; if (this.bytepos < 0) { this.writeByte(this.bytenew); if (this.bytenew == 0xFF) this.writeByte(0x00); this.bytepos = 7; this.bytenew = 0; } } } writeByte(value) { this.byteout.push(String.fromCharCode(value)); // write char directly instead of converting later } writeWord(value) { this.writeByte((value >> 8) & 0xFF); this.writeByte((value ) & 0xFF); } writeAPP0() { this.writeWord(0xFFE0); // marker this.writeWord(0x0010); // length this.writeByte(0x4A ); // J this.writeByte(0x46 ); // F this.writeByte(0x49 ); // I this.writeByte(0x46 ); // F this.writeByte(0x00 ); // = "JFIF",'\0' this.writeByte(0x01 ); // versionhi this.writeByte(0x01 ); // versionlo this.writeByte(0x00 ); // xyunits this.writeWord(0x0001); // xdensity this.writeWord(0x0001); // ydensity this.writeByte(0x00 ); // thumbnwidth this.writeByte(0x00 ); // thumbnheight } writeDQT() { this.writeWord(0xFFDB); // marker this.writeWord(0x0084); // length this.writeByte(0x00 ); this.YTable.forEach((v) => this.writeByte(v)); this.writeByte(0x01 ); this.UVTable.forEach((v) => this.writeByte(v)); } writeSOF0(width, height) { this.writeWord(0xFFC0); // marker this.writeWord(0x0011); // length, truecolor YUV JPG this.writeByte(0x08 ); // precision this.writeWord(height); this.writeWord(width ); this.writeByte(0x03 ); // nrofcomponents this.writeByte(0x01 ); // IdY this.writeByte(0x11 ); // HVY this.writeByte(0x00 ); // QTY this.writeByte(0x02 ); // IdU this.writeByte(0x11 ); // HVU this.writeByte(0x01 ); // QTU this.writeByte(0x03 ); // IdV this.writeByte(0x11 ); // HVV this.writeByte(0x01 ); // QTV } writeDHT() { this.writeWord(0xFFC4); // marker this.writeWord(0x01A2); // length this.writeByte(0x00 ); // HTYDCinfo this.std_dc_luminance_nrcodes.forEach((v) => this.writeByte(v)); this.std_dc_luminance_values.forEach((v) => this.writeByte(v)); this.writeByte(0x10 ); // HTYACinfo this.std_ac_luminance_nrcodes.forEach((v) => this.writeByte(v)); this.std_ac_luminance_values.forEach((v) => this.writeByte(v)); this.writeByte(0x01 ); // HTUDCinfo this.std_dc_chrominance_nrcodes.forEach((v) => this.writeByte(v)); this.std_dc_chrominance_values.forEach((v) => this.writeByte(v)); this.writeByte(0x11 ); // HTUACinfo this.std_ac_chrominance_nrcodes.forEach((v) => this.writeByte(v)); this.std_ac_chrominance_values.forEach((v) => this.writeByte(v)); } writeSOS() { this.writeWord(0xFFDA); // marker this.writeWord(0x000C); // length this.writeByte(0x03 ); // nrofcomponents this.writeByte(0x01 ); // IdY this.writeByte(0x00 ); // HTY this.writeByte(0x02 ); // IdU this.writeByte(0x11 ); // HTU this.writeByte(0x03 ); // IdV this.writeByte(0x11 ); // HTV this.writeByte(0x00 ); // Ss this.writeByte(0x3F ); // Se this.writeByte(0x00 ); // Bf } computeHuffmanTbl(nrcodes, std_table, HT, HT2) { let a, j; let codevalue = 0; let pos_in_table = 0; nrcodes.forEach((nrcodesK, k) => { for (j = 0; j < nrcodesK; j++) { HT[a = std_table[pos_in_table++]] = codevalue++; HT2[a ] = k; } codevalue *= 2; }); } initHuffmanTbl() { this.computeHuffmanTbl(this.std_dc_luminance_nrcodes , this.std_dc_luminance_values , this.YDC_HT , this.YDC_HT2 ); this.computeHuffmanTbl(this.std_dc_chrominance_nrcodes, this.std_dc_chrominance_values, this.UVDC_HT, this.UVDC_HT2); this.computeHuffmanTbl(this.std_ac_luminance_nrcodes , this.std_ac_luminance_values , this.YAC_HT , this.YAC_HT2 ); this.computeHuffmanTbl(this.std_ac_chrominance_nrcodes, this.std_ac_chrominance_values, this.UVAC_HT, this.UVAC_HT2); } initCategoryNumber() { let cat, nr, nrlower, nrupper, nrn; for (cat = 0, nrlower = 1, nrupper = 2; cat < 15; cat++, nrlower = nrupper, nrupper <<= 1) { for (nr = nrlower, nrn = nrlower - 1; nr < nrupper; nr++, nrn--) { //Positive & Negative numbers this.category[0x7FFF + nr] = this.category[0x7FFF - nr] = cat; this.bitcode[ 0x7FFF + nr] = nr; this.bitcode[ 0x7FFF - nr] = nrn; } } } initRGBYUVTable() { for(let i = 0x0000; i < 0x0100; i++) { this.RGB_YUV_TABLE[i ] = 0x004C8B * i ; this.RGB_YUV_TABLE[i + 0x0100] = 0x009646 * i ; this.RGB_YUV_TABLE[i + 0x0200] = 0x001D2F * i + 0x008000; this.RGB_YUV_TABLE[i + 0x0300] = - 0x002B33 * i ; this.RGB_YUV_TABLE[i + 0x0400] = - 0x0054CD * i ; this.RGB_YUV_TABLE[i + 0x0500] = 0x008000 * i + 0x807FFF; this.RGB_YUV_TABLE[i + 0x0600] = - 0x006B2F * i ; this.RGB_YUV_TABLE[i + 0x0700] = - 0x0014D1 * i ; } } initQuantTables(sf) { let i, t; let row; let col; [ 0x10, 0x0B, 0x0A, 0x10, 0x18, 0x28, 0x33, 0x3D, 0x0C, 0x0C, 0x0E, 0x13, 0x1A, 0x3A, 0x3C, 0x37, 0x0E, 0x0D, 0x10, 0x18, 0x28, 0x39, 0x45, 0x38, 0x0E, 0x11, 0x16, 0x1D, 0x33, 0x57, 0x50, 0x3E, 0x12, 0x16, 0x25, 0x38, 0x44, 0x6D, 0x67, 0x4D, 0x18, 0x23, 0x37, 0x40, 0x51, 0x68, 0x71, 0x5C, 0x31, 0x40, 0x4E, 0x57, 0x67, 0x79, 0x78, 0x65, 0x48, 0x5C, 0x5F, 0x62, 0x70, 0x64, 0x67, 0x63 ].forEach((v, i) => this.YTable[this.zigZag[i]] = (t = 0 | ((v * sf + 50) / 100)) < 1 ? 1 : t > 0xFF ? 0xFF : t); [ 0x11, 0x12, 0x18, 0x2F, 0x63, 0x63, 0x63, 0x63, 0x12, 0x15, 0x1A, 0x42, 0x63, 0x63, 0x63, 0x63, 0x18, 0x1A, 0x38, 0x63, 0x63, 0x63, 0x63, 0x63, 0x2F, 0x42, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63 ].forEach((v, i) => this.UVTable[this.zigZag[i]] = (t = 0 | ((v * sf + 50) / 100)) < 1 ? 1 : t > 0xFF ? 0xFF : t); let aasf = [ 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 ]; for (i = 0, row = 0; row < 8; row++) for (col = 0; col < 8; col++, i++) { this.fdtbl_Y[i] = 1.0 / (this.YTable [this.zigZag[i]] * aasf[row] * aasf[col] * 8.0); this.fdtbl_UV[i] = 1.0 / (this.UVTable[this.zigZag[i]] * aasf[row] * aasf[col] * 8.0); } } fDCTQuant(data, fdtbl) { // DCT & quantization core let d0, d1, d2, d3, d4, d5, d6, d7; let t0, t1, t2, t3, t4, t5, t6, t7; // Pass 1: process rows. let i, p; for (i = p = 0; i < 8; ++i, p += 8) { // advance pointer to next row d0 = data[p ]; d1 = data[p + 1]; d2 = data[p + 2]; d3 = data[p + 3]; d4 = data[p + 4]; d5 = data[p + 5]; d6 = data[p + 6]; d7 = data[p + 7]; t0 = d0 + d7; t7 = d0 - d7; t1 = d1 + d6; t6 = d1 - d6; t2 = d2 + d5; t5 = d2 - d5; t3 = d3 + d4; t4 = d3 - d4; // Even part d0 = t0 + t3; // phase 2 d1 = t1 + t2; d2 = t1 - t2; d3 = t0 - t3; data[p ] = d0 + d1; // phase 3 data[p + 4] = d0 - d1; d0 = (d2 + d3) * 0.707106781; // c4 data[p + 2] = d3 + d0; // phase 5 data[p + 6] = d3 - d0; // Odd part d0 = t4 + t5; // phase 2 d1 = t5 + t6; d2 = t6 + t7; // The rotator is modified from fig 4-8 to avoid extra negations. d3 = 0.382683433 * (d0 - d2); // c6 t2 = 0.541196100 * d0 + d3; // c2-c6 t4 = 1.306562965 * d2 + d3; // c2+c6 t3 = 0.707106781 * d1 ; // c4 d1 = t7 + t3; // phase 5 d3 = t7 - t3; data[p + 1] = d1 + t4; // phase 6 data[p + 3] = d3 - t2; data[p + 5] = d3 + t2; data[p + 7] = d1 - t4; } // Pass 2: process columns. for (i = p = 0; i < 8; ++i, p++) { // advance pointer to next column d0 = data[p ]; d1 = data[p + 0x08]; d2 = data[p + 0x10]; d3 = data[p + 0x18]; d4 = data[p + 0x20]; d5 = data[p + 0x28]; d6 = data[p + 0x30]; d7 = data[p + 0x38]; t0 = d0 + d7; t1 = d1 + d6; t2 = d2 + d5; t3 = d3 + d4; t4 = d3 - d4; t5 = d2 - d5; t6 = d1 - d6; t7 = d0 - d7; // Even part d0 = t0 + t3; // phase 2 d1 = t1 + t2; d2 = t1 - t2; d3 = t0 - t3; data[p ] = d0 + d1; // phase 3 data[p + 0x20] = d0 - d1; d0 = (d2 + d3) * 0.707106781; // c4 data[p + 0x10] = d3 + d0; // phase 5 data[p + 0x30] = d3 - d0; // Odd part d0 = t4 + t5; // phase 2 d1 = t5 + t6; d2 = t6 + t7; // The rotator is modified from fig 4-8 to avoid extra negations. d3 = 0.382683433 * (d0 - d2); // c6 t2 = 0.541196100 * d0 + d3; // c2-c6 t4 = 1.306562965 * d2 + d3; // c2+c6 t3 = 0.707106781 * d1; // c4 d1 = t7 + t3; // phase 5 d3 = t7 - t3; data[p + 0x08] = d1 + t4; // phase 6 data[p + 0x18] = d3 - t2; data[p + 0x28] = d3 + t2; data[p + 0x38] = d1 - t4; } // Quantize/descale the coefficients // Apply the quantization and scaling factor & Round to nearest integer for (i = 0; i < 64; ++i) this.outputfDCTQuant[i] = ((d0 = data[i] * fdtbl[i]) > 0.0) ? ((d0 + 0.5)|0) : ((d0 - 0.5)|0); //outputfDCTQuant[i] = fround(d0); return this.outputfDCTQuant; } processDU(CDU, fdtbl, DC, HTDC, HTAC, HTDC2, HTAC2) { let pos, i, a; let EOB = HTAC[0x00]; let EOB2 = HTAC2[0x00]; let M16zeroes = HTAC[0xF0]; let M16zeroes2 = HTAC2[0xF0]; let DU_DCT = this.fDCTQuant(CDU, fdtbl); //ZigZag reorder for (i = 0; i < 64; ++i) this.DU[this.zigZag[i]] = DU_DCT[i]; let Diff = this.DU[0] - DC; DC = this.DU[0]; //Encode DC if (Diff == 0) this.writeBits(HTDC[0], HTDC2[0]); // Diff might be 0 else { pos = 0x7FFF + Diff; this.writeBits(HTDC[a = this.category[pos] + 1], HTDC2[a]); this.writeBits(this.bitcode[pos], this.category[pos]); } //Encode ACs let end0pos = 0x3F; // was const... which is crazy while (end0pos > 0 && this.DU[end0pos] == 0) end0pos--; if (end0pos == 0) this.writeBits(EOB, EOB2); //end0pos = first element in reverse order !=0 else { let lng, startpos, nrzeroes, nrmarker; end0pos++; for (i = 1; i < end0pos; i++) { startpos = i; while (this.DU[i] == 0 && i < end0pos) ++i; nrzeroes = i - startpos; if (nrzeroes > 0x0F) { lng = nrzeroes >> 4; for (nrmarker = 0; nrmarker < lng; ++nrmarker) this.writeBits(M16zeroes, M16zeroes2); nrzeroes = nrzeroes & 0x0F; } this.writeBits(HTAC[a = (nrzeroes << 4) + this.category[pos = 0x7FFF + this.DU[i]] + 1], HTAC2[a]); this.writeBits(this.bitcode[pos], this.category[pos]); } if (end0pos != 0x40) this.writeBits(EOB, EOB2); } return DC; } encode(imageData, quality = 0.92) { // image data object this.byteout = []; // Initialize bit writer this.bytenew = 0; this.bytepos = 7; let newSf = Math.floor(quality < 0.5 ? 50 / quality : 200 * (1 - quality)); if ((typeof this.sf) == 'undefined' || newSf !== this.sf) this.initQuantTables(this.sf = newSf); // Add JPEG headers this.writeWord(0xFFD8); // SOI this.writeAPP0(); this.writeDQT(); this.writeSOF0(imageData.width, imageData.height); this.writeDHT(); this.writeSOS(); let y1, y2, y3, pY3, pY1; let x1, x2, x3, pX3, pX1; let r, g, b; let pos; let quadWidth = imageData.width * 4; let width32 = imageData.width * 32; // Encode 8x8 macroblocks let DCY = 0; let DCU = 0; let DCV = 0; for (y1 = 0, pY1 = 0; y1 < imageData.height; y1 += 8, pY1 += width32) { for (x1 = 0, pX1 = pY1; x1 < imageData.width; x1 += 8, pX1 += 32) { for (y2 = pos = 0, y3 = y1, pY3 = pX1; y2 < 8; y2++, y3++, pY3 += quadWidth) { for (x2 = 0, x3 = x1, pX3 = pY3; x2 < 8; x2++, x3++, pos++) { if (y3 < imageData.height && x3 < imageData.width) { r = imageData.data[pX3++]; g = imageData.data[pX3++]; b = imageData.data[pX3++]; pX3++; } else r = g = b = 0; // padding this.YDU[pos] = ((this.RGB_YUV_TABLE[r ] + this.RGB_YUV_TABLE[g + 0x0100] + this.RGB_YUV_TABLE[b + 0x0200]) >> 16) - 0x80; this.UDU[pos] = ((this.RGB_YUV_TABLE[r + 0x0300] + this.RGB_YUV_TABLE[g + 0x0400] + this.RGB_YUV_TABLE[b + 0x0500]) >> 16) - 0x80; this.VDU[pos] = ((this.RGB_YUV_TABLE[r + 0x0500] + this.RGB_YUV_TABLE[g + 0x0600] + this.RGB_YUV_TABLE[b + 0x0700]) >> 16) - 0x80; } } DCY = this.processDU(this.YDU, this.fdtbl_Y , DCY, this.YDC_HT, this.YAC_HT, this.YDC_HT2, this.YAC_HT2); DCU = this.processDU(this.UDU, this.fdtbl_UV, DCU, this.UVDC_HT, this.UVAC_HT, this.UVDC_HT2, this.UVAC_HT2); DCV = this.processDU(this.VDU, this.fdtbl_UV, DCV, this.UVDC_HT, this.UVAC_HT, this.UVDC_HT2, this.UVAC_HT2); } } //////////////////////////////////////////////////////////////// // Do the bit alignment of the EOI marker if (this.bytepos >= 0) this.writeBits((1 << (this.bytepos + 1)) - 1, this.bytepos); this.writeWord(0xFFD9); //EOI let res = 'data:image/jpeg;base64,' + btoa(this.byteout.join('')); this.byteout = []; return res; } } /* let canvas = new Canvas(); canvas.width = 500; canvas.height = 500; canvas.getContext('2d').drawImage(document.getElementById('img1'), -20, 20, 600, 500, 20, -10, 300, 400, () => { let jpegEncoder = new JpegEncoder(); let b64 = jpegEncoder.encode(canvas.context.imageData); console.log('JpegEncode:', b64); console.log('canvas.context.imageData =', canvas.context.imageData); document.getElementById('imgBase64').src = b64; }); document.body.appendChild(canvas.domCanvas); */